If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-40y-50=0
a = 5; b = -40; c = -50;
Δ = b2-4ac
Δ = -402-4·5·(-50)
Δ = 2600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2600}=\sqrt{100*26}=\sqrt{100}*\sqrt{26}=10\sqrt{26}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{26}}{2*5}=\frac{40-10\sqrt{26}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{26}}{2*5}=\frac{40+10\sqrt{26}}{10} $
| 1+1/5x=1/2 | | 0.6x+1=x-4 | | 5x-(2x+4)=4-(2x-3) | | 4x+3x/12=x/18000 | | 7x-45=4x+9 | | x/3+x/4+x=18000 | | X-3+2x=2-3x+1 | | a+5+1/3=7 | | 3k=4+2 | | 10=z+3+4/5 | | 3(x-3)+2=3-2x | | 5=y-2+5/8 | | 5x-14=-9x | | 5=y-25/8 | | F(x)=12+(4x*4x) | | 3(x-4)=x-4 | | 2x-(x-4)=12 | | 1/5^m+2=3125 | | 12-u=5u | | 0.02×y=2 | | 2(y-1/2)-y=8(4-y) | | 1/6a=4 | | 2y−12−y=8(4−y) | | x+9/3=12 | | X+2+2x=5-2x | | 31/4s=-11 | | 5x/3+4=14 | | s+42=78 | | X/6x-27+3x=4+9-x | | -8+3x=-32=36x | | 7x=2x=35 | | 12d=9 |